3,197 research outputs found

    Gamma flashes from relativistic electron-positron plasma droplets

    Full text link
    Ultra-intense lasers are expected to produce, in near future, relativistic electron-positron plasma droplets. Considering the local photon production rate in complete leading order in quantum electrodynamics (QED), we point out that these droplets are interesting sources of gamma ray flashesComment: 4 pages, 6 figures; Text has been revised and new refs. are adde

    Flat-top oscillons in an expanding universe

    Full text link
    Oscillons are extremely long lived, oscillatory, spatially localized field configurations that arise from generic initial conditions in a large number of non-linear field theories. With an eye towards their cosmological implications, we investigate their properties in an expanding universe. We (1) provide an analytic solution for one dimensional oscillons (for the models under consideration) and discuss their generalization to 3 dimensions, (2) discuss their stability against long wavelength perturbations and (3) estimate the effects of expansion on their shapes and life-times. In particular, we discuss a new, extended class of oscillons with surprisingly flat tops. We show that these flat topped oscillons are more robust against collapse instabilities in (3+1) dimensions than their usual counterparts. Unlike the solutions found in the small amplitude analysis, the width of these configurations is a non-monotonic function of their amplitudes.Comment: v2-matches version published in Phys. Rev D. Updated references and minor modification to section 4.

    Position-dependent-mass; Cylindrical coordinates, separability, exact solvability, and PT-symmetry

    Full text link
    The kinetic energy operator with position-dependent-mass in cylindrical coordinates is obtained. The separability of the corresponding Schr\"odinger equation is discussed within radial cylindrical mass settings. Azimuthal symmetry is assumed and spectral signatures of various z-dependent interaction potentials (Hermitian and non-Hermitian PT-symmetric) are reported.Comment: 16 page

    Conserved Density Fluctuation and Temporal Correlation Function in HTL Perturbation Theory

    Full text link
    Considering recently developed Hard Thermal Loop perturbation theory that takes into account the effect of the variation of the external field through the fluctuations of a conserved quantity we calculate the temporal component of the Euclidian correlation function in the vector channel. The results are found to be in good agreement with the very recent results obtained within the quenched approximation of QCD and small values of the quark mass (0.1T\sim 0.1T) on improved lattices of size 1283×Nτ128^3\times N_\tau at (Nτ=40, T=1.2TCN_\tau=40, \ T=1.2T_C), (Nτ=48, T=1.45TCN_\tau=48, \ T=1.45T_C), and (Nτ=16, T=2.98TCN_\tau=16, \ T=2.98T_C), where NτN_\tau is the temporal extent of the lattice. This suggests that the results from lattice QCD and Hard Thermal Loop perturbation theory are in close proximity for a quantity associated with the conserved density fluctuation.Comment: 16 pages, 4 figures; One para added in introduction, Fig 1 modified; Accepted in Phys. Rev.

    Profinite completion of Grigorchuk's group is not finitely presented

    Full text link
    In this paper we prove that the profinite completion G^\mathcal{\hat G} of the Grigorchuk group G\mathcal{G} is not finitely presented as a profinite group. We obtain this result by showing that H^2(\mathcal{\hat G},\field{F}_2) is infinite dimensional. Also several results are proven about the finite quotients G/StG(n)\mathcal{G}/ St_{\mathcal{G}}(n) including minimal presentations and Schur Multipliers

    Low Mass Dilepton Rate from the Deconfined Phase

    Full text link
    We discuss low mass dilepton rates (1\le 1 GeV) from the deconfined phase of QCD using both perturbative and non-perturbative models and compare with those from lattice gauge theory and in-medium hadron gas. Our analysis suggests that the rate at very low invariant mass (M200 M\le 200 MeV) using the nonperturbative gluon condensate in a semiempirical way within the Green function dominates over the Born-rate and independent of any uncertainty associated with the choice of the strong coupling in perturbation theory. On the other hand the rate from ρq\rho-q interaction in the deconfined phase is important between 200 MeV M1GeVasitisalmostofsameorderoftheBornrateaswellasinmediumhadrongasrate.Alsothehigherorderperturbativerate,leavingasideitsvariousuncertainties,fromHTLapproximationbecomesreliableat\le M \le 1 GeV as it is almost of same order of the Born-rate as well as in-medium hadron gas rate. Also the higher order perturbative rate, leaving aside its various uncertainties, from HTL approximation becomes reliable at M\ge 200MeVandalsobecomescomparablewiththeBornrateandthelatticeratefor MeV and also becomes comparable with the Born-rate and the lattice-rate for M\ge 500$ MeV, constraining on the broad resonance structures in the dilepton rate at large invariant mass. We also discuss the lattice constraints on the low mass dilepton rate. Furthermore, we discuss a more realistic way to advocate the quark-hadron duality hypothesis based on the dilepton rates from QGP and hadron gas than it is done in the literature.Comment: 24 pages, 9 figures; Discussion added, Accepted in Phys. Rev.

    d-Dimensional generalization of the point canonical transformation for a quantum particle with position-dependent mass

    Full text link
    The d-dimensional generalization of the point canonical transformation for a quantum particle endowed with a position-dependent mass in Schrodinger equation is described. Illustrative examples including; the harmonic oscillator, Coulomb, spiked harmonic, Kratzer, Morse oscillator, Poschl-Teller and Hulthen potentials are used as reference potentials to obtain exact energy eigenvalues and eigenfunctions for target potentials at different position-dependent mass settings.Comment: 14 pages, no figures, to appear in J. Phys. A: Math. Ge

    Colour-singlet clustering of partons and recombination model for hadronization of quark-gluon plasma

    Full text link
    SU(Nc)SU(N_c) colour-singlet restriction, along with flavour and spin symmetry, on thermal partonic ensemble is shown to recombine the partons with internal colour structure into colour-singlet multi-quark clusters which can be identified with various hadronic modes at a given temperature. This provides a possible basis for recombination model for hadronization of quark-gluon plasma. This also leads to a natural explanation for the ratio of (anti)protons to pions and the quark number scaling of the elliptic flow coefficient in relativistic heavy-ion collisions.Comment: 5 pages; version accepted as a Rapid Communication in Phys. Rev.

    Radiative and Collisional Jet Energy Loss in the Quark-Gluon Plasma at RHIC

    Full text link
    We calculate and compare bremsstrahlung and collisional energy loss of hard partons traversing a quark-gluon plasma. Our treatment of both processes is complete at leading order in the coupling and accounts for the probabilistic nature of the jet energy loss. We find that the nuclear modification factor RAAR_{AA} for neutral π0\pi^0 production in heavy ion collisions is sensitive to the inclusion of collisional and radiative energy loss contributions while the averaged energy loss only slightly increases if collisional energy loss is included for parent parton energies ETE\gg T. These results are important for the understanding of jet quenching in Au+Au collisions at 200AGeV200 {\rm AGeV} at RHIC. Comparison with data is performed applying the energy loss calculation to a relativistic ideal (3+1)-dimensional hydrodynamic description of the thermalized medium formed at RHIC.Comment: 4 pages, 3 figure
    corecore